Joint spacing in sedimentary rocks

W Narr* and J Suppe

Abstract

It is widely observed that goint spacting, is ploporional to bed thickness in sedimenary rucks 'The and by one dimensunal numercal modelling based on Hobbs' theury ol form spacing conhesive rocks of the Monterey Formation-including, dolostone, porcelanile, siliceous shale and thert- al font spacing to median spacing is log normal Relatively pliable mudsiones du nor have regular form sels hul are mechanically imporiant because they larm the boundanes to the formed, cohestevestrata

Hobbs' model iniuilively predicis a consiant ratio ol bed thickness lo pomin spacing, however, a simulation hased on this model predicts a multimodal disinbution ol goni spacing, By adding the ehect ol a limiled number ol flaws to the model, which weaken the bed at random siles along its length, a smulated disinbution of point apacing is obtaned ihat is similar to the abserved log, normal distnbulion 'Thus. Hobbs' model, modihed lis include the eflect ol flaws, seems capable of predicting the ohserved stalistics of funt spacing as a function of laye thickness in sedimentary strata

INTRODUCTION

Joints are planar tensile opening-mode Iractures with little or no displacement parallel to the Iracture plane. Joints in bedded sedimentary rock are generally perpen dicular to bedding and occur with parallel fractures to lorm a point set.

The distance between joints ot a given set is relatively consiant within a single layer and is proportional to layer thickness (Bogdonov 1447, Price 1966) Thus beds of different thickness of the same rock type will have essentially the sume ratio of layer thickness to joint spacıng, although very thick beds may depart from this generalization (Ladeira \& Price 1481). The value of the thickness-spacing ralto can be influenced by rock type and structural position (Harris et al 1460), Narr 1491). Huang \& Angelier (1489) report that the proportionality of layer thick ness to joint spacing exists in both compres. sional and extensional regimes.

The frequency distribution of joint spacing potentially provides information on the genesis and evolution of pint sets, us discussed below. However, few dala exist in the literature. Huang \& Angelier (1989) document a skewed Irequency distribution of spacing that they believe is fitted best by a gamma distribution function, which they nute differs only slighily from a log normal disiribution. In this paper we present data from the Monterey Furmation of Califome that displays a skewed spacing frequency distribution that is approxi mately log.normal

Engineenng studies have examined foint spacing dis inbutions, but because they typically do not separate genetically distinct joint sets their measurements con tribute little to the scientitic understanding of joint

[^0]development. The standard engineenng technique in volves measuring the spacing between joints along a scan line or borehole of arbitrary orientation In a widely ciled study, Priest \& Hudson (1976) lound the frequency distribulion of the spacing of 'discontinuities' in rock follows a negative exponential form Their disconti nuities included not just joints but also taults, bedding planes, fractures, fissures and microtissures 'They stated explicitly that this negative exponential distribution does not apply il there is predominance ol evenly spaced discontinuites, which is the case of interest to us Bridges (1475) emphasized the usefulness ol segregating different fracture sets in scan line surveys and lound that individual sets show a log-normal spacing distrobution. Vanous theoretical statistical models of form spacing distributions exist in the engineering literature (e g Dershowitz \& Einstein 1488), these seek to describe joint spacıng distributions based on conceptual models of jount systems These conceptual models contribule litile at this stage to our knowledge of actual foint sets.
Several models have attempted to assess the processes and parameters important in determining finnt spacing (e.g. Price 1966, Hobbs 1467, Sowers 1472). In each of these models the computed foint spacing depends un thickness of the jointed layer, on a contrast in physical propertles between the jointed layer and adjacent beds, and on layer parallel extensional strain These models are manly heuristic- ihey have not been used 10 simu late actual fornt spacing distroutions.

We used Hobbs' (1967) model to simulate the lorm ol the joinl spacing distribution, which we compare with joint spacing data from the Monterey Formation of central Calilornia We also use a modified form ol Hobbs' model that includes the effects of flaws and find that the resultant simulated distributions of point spacing are similar in lorm to those denved from held data
We measured the spacing ol joints in dolostone, chert,

Fig, I Index map Mapor taulis (thick lines) and fold axes (ihon lines with anows indicaling antichne or syncline) are from Jennings (1477)

Labeled stes show where punis were studied in uulcrop
porcelanite and siliceous shale of the Monterey Forma tion We also examined the mechanical boundaries of jointed layers to understand better the character of the mechanical layenng We first discuss our field data and then Hubbs' model and the effect of Haws on foint spacing distribution

DATA ON JOINT SPACING AND MECHANICAL LAYERING

Study are'a

We studied joints of the Monterey Formation in well exposed beach outcrops (Fig. 1) in the Santa Mana basin and Santa Ynez Mountans of the Transverse Ranges province (Dibblee 1482) of California. The Monterey Formation is an approximately 701 m thick sequence of interbedded siliceous shale, chert, phosphatic shale, mudstone and dolostone of Moncene age It was depusiled in relatively deep water, sediment starved mar ine basins, with terrigenous influx restricted largely to pelagic and hemipelagic matenal (Pisciotio \& Garrison 1981) Dratom lests are the source of slica (Bramlett 1946). The outcrops we studied consist of interbedded dolostone, chert or its diagenetic equivalent, and mudstone/shale ol the upper calcareous siliceous member and transitional member of the Monterey Formation (Isaacs 1483).

Upon burial the siliceous strata of the Monterey

Formation underwenl iwn dominanlly lemperalure controlled dagenetic phase changes that atlected their mechancal properties (Isadacs $1481 a$) The amorphous upal of the origmal diatom tests converts to opal C'T al a temperature less than oll ${ }^{\circ}{ }^{\circ}$, resulting in the embrittle ment il soll rocks such as diatomite as they transtorm intoropal CT' cherl (Piscooto 1481) A second ransition is reached hetore about 1 lo'C'in which upal C'T' converts to quariz tor produce a rock of lower porosity and higher densily The diagenetic grade ol the siliceous rocks in our study ranges from quartz lo opal ('T' + quartz (transitonal). As silica content decreases in silatclastic rocks of the Monterey Formation, the assoctated rock name changes from chert to porcelanite to silcceous shale/mudstone to mudstone
'The outcrops we studied lie in several structural sellings Jalama Beach and Point Arguello Boathouse (Fig I) are on a S dipping homocline, which Namsond Davis (1988) interpret as the lorward dipping panel of a crustal scale fault bend told (hert is in the quartz grade of dagenesis at Pornt Arguello Buathouse (Grivelti 1482) and al Jalama Beach (hased on the widespread occurrence of hlack glassy chert with a somewhat gramy surtace texture—lsaacs 14XIb) The Honda Creek out crop lies jusi south of a S dipping, lell lateral oblique slip reverse taull (Dibblee 145(1) and appears to be at quartz diagenetic grade.

At Lions Head, basement rock ol the Point Sal opho lite is thrust up approximately 1300 m on the north side of the WNW trending Lions Head tault (Wondring \& Bramlette 1450). Our study site lies immediately south of the tault where Monterey Formation strata dip steeply SSW Rocks are in the quartz stage of diagenesis (Grivetlı 1482, Dunham 1487).

Purisima Point is in the crestal region ol a broad, E trending anlicline Siliceous strala here have been par tially transtormed from opal CT' to quartz (Grivetlt 1482, Dunham 1487)

In additon to the outcrop sites. we examined gonts in cores trom lour wells trom the Point Arguello oil field olishore (Fig 1) Permeability of the oll tield reservoir depends largely on this subsurlace point system 'The results ol our study of this subsurface foint system are presented elsewhere (Narr 1441)

Joint attrode's and spacing,

At most oulcrops only one well developed joint set is present, and these pomis are usually oriented normal to local lold axes (Narr 1441). In the less common cases where multiple foint sets are present at individual out crops, the predominant set is typically normal to the fold axis Figure 2(a) is un oblique view ot a dipping layer of siliceous shate, with the predominant foint set straking parallel to the dip of hedding In Fig 2(b) the predomi nant joint set is slightly inclined to the dip of bedding in a layer of dolostone

We measured the spacing of foints in each major rock lype over a range ol layer thicknesses We reler 10 'lavers’ or 'mechanical lavers' rather than 'heds' to

-
emphasize the fact that jomes are confined to mechan cally determined luyers, which may nevertheless con tain signifieant hedding planes and sedimentary lamina tions that are cross cut hy the fonts That is to say, the ponted mechanical layers may comprise more than one stralıgraphic bed In general, layers were selected lor measurement if they had at least 10 ponts with spacings that could be measured along a continuous line oriented normal to the mean altitude of the fint sel Each measured form passes through the entire mechansal layer and exhihits a relatively great length parallel to bedding. Our data consist of 38 sets of l(1-50) measure ments in 3.3 layers (two non parallel foint sets were measured in five of the layers)

Dunham (1987) poinled out that strata al these outcrops are ether 'britle', meaning they sustain a well developed foint system, or else are relatively solt and have poorly developed form systems. The 'britle' rocks are harder and more cohesive, they include chert, dolostone, porcelanite and hard siliceous shale/mudstone. The distinction between hard siliceous shale and porce lanite is gradational and subjective, therefore we group these two rock types together. It will become clear that our results are not aflected by this grouping The sotter, less cohesive rocks are principally mudstone and shale. Despite a lithologic contınuum among the siliceous clasic rocks from chert through mudstone, the jointing, properties of rock at this level of dagenesis show a distinct binary division into fomled (bntile or more cohesive) and non jointed (soft or less cohesive) In solt beds etther no joints are present or the joints are so widely spaced that reltable measurements of their spacing cannot be ublamed, even at these excellent exposures. Figure 2(c) shows a well developed formt set in a dolostone layer, overlying, a relatively unfornted mudstone bed

Joint density does not vary apprectably as a lunction of either lithology or location in hard heds of the Mon terey Formation The independence of spacing on litho logy is shown in Fig 3(a), in which the median spacing of joints for each dala set is plotted tor each rock type as a function ol layer thickness. The median is a beller and more stable estimator of the center of these asymmetro (log-normal) populations ot fornt spacing than is the arithmetic mean

We refer to the slope ol the layer thickness-median foint spacing, regression line as the fracture spacing index, computed with median foint spacing as the de pendent variable This defintion is chosen so that greater values of the tracture-spacing index indsate higher foint density. The fracture spacing index is a lundamental quanlity for practical prediction of key properties of fractured subsurtace reservors based on borehole dala, as shown elsewhere (Narr 1441) Fracture spacing index for each rock type is shown in Fig 3(a) The near coincidence of the regression lines in this figure shows that the fracture densities tor each rock type are eftectively equal. The total data set shows litile deviation from a straight line trend with a tracture spacing index of 129

Fig 3 (a) Median layer thickness and median foint spacing al all sudy stes, plutted by lithology Lanear regression lines through the data are as lollows Dolonsone $T=132 S-011, r^{2}=1142$ Porcelunite and silicenus shale $T=122 S^{\prime}-1(K), r^{\prime}=047$ Chen $T=1275+170, r^{2}=0144$ (b) Median layer thickness and median fornt spacing in all lithologies, plolted by study ste

Figure $3(b)$ shows the same data sorted by area. Although our outcrops occupy structurally diverse sel lings, as discussed above, the tracture spacing index shows no dependence on local structure or geographic focation along the coast (Fig 1) The two atypical data points that fall to the nght of the regression line in Fig. 3(b) are from Purisima Point and are each for layers with two well developed and approximately orthogonal joint sets; data for the other joint set in the layers fall distinctly withon the main group of points. This suggests that different joint sets in a layer had different genetic histor ies.

In contrast to the relatively constant lracture spacing index in outcrop, fracture spacing index in cores from difterent wells trom the Point A rguello oll field ollshore (Fig. 1), in which the rocks are at quartz diagenelic grade and at the same stratigraphic level as most of the out. crops, ranges from 0.10 to 1145 (Narr 1491) 'The sub surtace goints are similar to those in outcrop in that they

Fitg 4 Frequency disinthulion al normalized pioni spacing (individual spacing/median spacing) (a) linear scale, (b) nalural logg srale
belong to a single set onented orthogonal to the axis of the anticline (and in the present day stress direction). Furthermore the same distinction exists between hard rocks which are foinled and soll rocks which are non jointed Within single wells over limited depth ranges. there is essentially no variation in fracture spacing index among the different brillle rock types Note Irom this discussion that tracture spacing index provides a con venient and quantitatively consistent scalar measure. ment lor companson of the pointed state of diverse oulcrops, beds and rock types (see Narr 1441).

Joint spacing distribution

The mean formi spacing in single layers is consistently greater than the median foint spacing, which indicates that the spacing distribution is skewed Prest \& Hudson (1976) pointed out that their negative exponential model lor the distribution of discontinuities implies that the mean and standard deviation should be equal In our data the standard deviation of the spacing is typically about 05 times the mean spacing, which concurs with Huang \& Angelier's (1484) opinion that the negative exponential model is not an appropriate descnption of joint spacing distributions.

Our measurements of joint spacing in any single layer are generally insulficient to describe a foint spacıng distribution with confidence Theretore we normalized our data by dividing each measurement of joint spacing, by the median joint spacing for its data set. Because the fracture-spacing indices for almost all our data are closely similar, we have placed all of the normalized joint spacings on a single joint spacing distribution diagram (Fig 4)

Figure $4(a)$ is a linear histogram of normalized joint spacing lor 38 data sets in 33 layers, and Fig, 4(b) is a histogram of the natural loganthm ot normalized font spacing tor the same data The symmetric form of the log distribution histogram indicates that the normalized form spacings are described well by a log, normal disiri bution

Mechantal laver boundarmes

'The boundanes of' the pointed mechanical layers that have been observed both in outcrop and in core (Narr 1491) are nearly always either undeformed mudstone or surlaces of interbed slip that display slickensides The mechanical layer boundaries in outcrop are easily identi hed as bedding parallel surlaces where foints commonly terminate. Figure 2(d) shows foints terminaling at the base of the layer of siliceous shale aganst a mechanical layer consisting of mudstone Identification of mechan ical layer boundaries in core is discussed in Nar (1491). Conversely, it is observed that mudstone layers, irre spective of thickness and interbed slip surtaces, always act as mechanical layer boundaries. Table 1 summarizes the character ol the boundanes to the jomied layers for which we measured goint spacing, in outcrop Solt mudstone/shale and sheared layers compose 92% of the layer boundaries. Siliceous shale is hard and cohesive relative to mudstone, but it is soft relative to chert beds, all 3% of the boundaries that are in silaceous shale occur where il hounds jomted layers of chen 'The final 5% of mechanical layer boundanes consist ol cher layers bounded by chert layers, with no obvious change in rock lype at the boundary of the jomed layer We suspect that these surfaces may have expenenced interbed slip during the flexural slip tolding that is a common leature ol chert beds

Table I The nalure of to mechanical layer houndaries of ponted layers observed in outcrops ol the Monterey Fiormalion

Lithology	Count	Percent
Soth mudstune/shale	4K	RU
Sheared layers	\vdots	1
Silicens shale	\vdots	3
Chert	1	4

Usually the mechanical layer boundary is a thin and discrete layer Even where a thick, non jointed mud stone is adjacent to a jointed bed, a thin, solter layer usually lies immediately adjacent to the jointed bed Where mechanical layer boundanes consist of discrete solt layers, their thicknesses range from 0.1 to 15 cm , with a median of 3.1 cm (Fig. 5).

MODELS OF JOINT SET DEVELOPMENT

Hobbs' model

In spite of the fact that joints are one of the most common mesoscopic structures at the Earth's surlace,

Fif: ", 'Thickness al mechanical layer houndanes
there have been lew altempts to explan their spacing Ramberg (1455) and Vongh (1465) analyzed the spacing of fractures in a stitl layer encased in more plant layers, but their viscous analyses are more appropnate for boudins than for most foints Sowers (1472) presented a model to explain joint spacing based on the idea that stress concentrations develop at penodic instabilities Ihat form al the interiace between layers having difler ent elastic properties Although Sowers related his model to the spacing, of points, the computations he presented show that extremely high layer parallel exten sional strains are needed to create even very low fracture density. If his model has any applicability to natural fraclures it is probably io britle boudins encased in a viscous matrix, nol to jomts. Price (1966) suggested qualitatively that spacing of joints is cont rolled by strain interaction across finctionally coupled bed boundaries

Hobbs (1467) presented a simple model to explain fornt spacing in sedimentary rocks as a consequence ol layer-parallel extension, based on the lact that a single fornt confined to a layer only releases stress for a short distance along the layer normal to the jomt. The rest of the layer remains at a stress close to the fracture stress Hobbs treated bedded strata as an interlayered elastic sequence, with welded layer boundanes and with ditfer ent layers having dilferent elastic moduli. We used Hobbs' model because il is based on a reasonably simple but, to first order, physically reasonable view of the interaction between layers contarning Iractures. Even Sowers (1472) remarked that Hobbs' "explanation may account for fracture spacing in rocks if an instability cannol develop"

Consider Hobbs' model in terms ol a single 'fornting' layer between lower-modulus neighbor beds. Some inital joints lorm at weak points in the layer as a result of a far-field extensional stram. The stress relief that accompanies font formation is locally damped as a function ol the shear modulus, G_{n}, of the lower modulus neighbonng beds Hobbs assumed that layer parallel shear stress, r, in a neighboring bed decreases linearly away from the intertace with the pointed bed as

$$
\begin{equation*}
r=r_{\mathrm{d}}\left(\frac{T-v}{T}\right) \tag{1}
\end{equation*}
$$

where τ_{d} is shear stress at the layer interlace, T is thick ness of the fointing layer, and y is distance away from the layer intertace in the neighboring bed Tensile stress, o, along the centerline of the fointed bed in
creases in magnilude away from a pomi in the 1 directom (parallel lo hedding) as"
$a=E_{\varepsilon_{1}} T^{\prime}\left|1+\sinh \left(\frac{2}{T} \sqrt{\frac{\bar{C}_{n}}{E}}\right),-\cosh \left(\frac{1}{T}, \frac{i \bar{G}_{n}}{E}\right),\right|$.
where E and $t_{\text {, are }}$ Y'oung's modulus and strann, respect ively, in the poinled bed. This equation is derived trum Hohbs' equations (6) and (13) From this we see that the magnitude ol tensile sitess decreases more rapidly away from an existing foint with decreasing T and E, and increasing U_{n}

Tensile stress parallel to bedding in the jomeded bed increases in magnitude away from an existing foint as a function ot extensional strain in the neighboring bed, i_{n}, (Hobbs' equatorn 14).

$$
\begin{equation*}
a=E r_{n} T\left[1-\frac{\cosh \left(\frac{2}{T} \sqrt{\frac{O_{n}}{E}} \frac{S}{2-1}\right)}{\cosh \left(\frac{S}{T} \sqrt{\frac{G_{n}}{E}}\right)}\right] \tag{3}
\end{equation*}
$$

where S is distance between existing fornts Hubbs showed that the maximum tensile stress occurs midway between two existing foints, and that the spacing, of fonts is proportional to $T, E^{1 / 2}$ and $G_{n}^{-1 / 2}$.

Hobbs predicted that joints can form at any site along a bed provided it is not close to a pre exisiting, foint, as illustrated by equation (2) Following the lormation of a sulficient number of joints at random siles in the bed, subsequent foints develop midway between pre existing points as described by equalion (3) Figure $h(a)$ shows the physical situation envisaged by Hobbs A fornted layer lies between lower modulus beds, with fornts forming the ends of the layer, and this stratified package expenences a lar field extensional stran that increases with time (Fig. 6b) The tensile stress is zero across each point surlace; the stress is transmitled in the adjacent lower modulus beds. Figure 6(c) shows the nurmal stress as a tunction ol distance along the centerline of the ponted bed. The tensile stress is zero at the left mosis foint ($1=0$), increases to a maximum at the modpoini between joints, then symmetncally returns tozero at the joint on the right side When the magnilude of the tensile stress reaches the tensile strength, C_{10}, of the layer a new font furms midway between existing fonts, and tensile stress goes to zero al this pornt The stress distrabution after formation of the new funt at J_{1} is shown in Fig, $\mathrm{g}(\mathrm{d})$. Continued extension leads to the lormation ol new joints al the midpoints, J_{2}, between existing points, and the stress distribution at this stage is shown in Fig. 6(e)

We tested Hobbs' model of foint spacing in a simu lation by placing some initial foints al random locations along a layer. We simulated a point system by success ively breaking each longest point bounded segment mid way between existing joints The spacing distabution generated by this model is charactenstically multi peaked (Fig. 7) In contrast, the observed joml spacing distribution in the Monterey Formation is single peaked, although skewed in the same sense (compare Figs. 4 and 7).

 and lower modulus neighbonng heds in response lolar held extension. (b) Fur field extensional stiam incteases with lime

 punts

Addituon of flaws to Hobbs' model

A significant aspect of fraclure formation that Hobbs did not address is the eflect ol flaws, which are present in all britle materials and which form a centerpiece of the science of tracture mechanics (Aikinson 1987). Ginftith (1421, 1924) demonstrated that even micruscopic cracks magnity stress in a material, effectively reducing its strength. Microcracks may magnify stress, but they are so pervasive in rock that they likely determine its effec tive tensile strength, and hence do not have any ellect on the joint spacing distribution. Joints commonly nucleate from macroscopic flaws such as fiossils, concretions and bedding plane irregulanties (Eingelder 1487, Pollard \& Aydin 1988, Kulander et al 1991) These macroscopic flaws may be widely variable in size and widely spaced, in the Monterey Formation they may include tish scales and bones They will magnify stress more than microcracks because the stress magniticution increases hy the
square of the Haw or crack length (Jaeger \& Cook 1474 P 338)
We made a simple modtication of our Hobbs' model simulation by adding flaws that reduce the strength of the gointing layer (Fig 8) Flaws are placed at random locations on the xaxs along the centerline of the bedin elfect we are making a very simple one dimensional model of the eftect of Haws. Furthermore the flaws are made to reduce the tensile strength of the layer by randomly varying amounts. In Fig. $X(a)$ the lines labeled $f_{1}, f_{2} \ldots, f_{n}$ represent locations and relative sizes of the Haws. Figure 8(b) gives the tensile strength of the jominted bed along the r direction, for example the strength ot the bed at flaw t_{1} is C_{1}, whereas the strength away from the flaws is C_{n} and the strength at the points, J_{10}, is zero We still use the stress distribution along the centerline predicted by Hobbs (equation 3), assuming that the flaws do not perturb the stress field to the same order as the jounts. Jonnts are allowed in form wherever the

Fig 7 Joirl spacinp, distribulion predicled by Hobbs' (I'thit) model (a) Simulatom with promordial gonis spaced l(KN) times layer thick ness (b) Simulation with pmoordial foints widely and randomly יpaced
tensile stress magnitude equals the local rock strength Although the tensile stress magnitude reaches its maxi mum value midway between existing foints, the nexi joint to form is commonly at a flaw, as in Fig 8(c). Most new fornts will not be at the midpoint between pre existing foints

The joint spacing distribution of Fig 4 was produced using the flaw modified Hobbs' model 'This distribution compares well in form with the actual distribution ol foint spacing in the Monterey Formation (Fig. 4) In particular it is more nearly single peaked than the model without haws (Fig. 7) and shows a distribution closer to log-normal. The elastic properties used to generate this model are typical values tur a chert or dolostone layer between weak mudstone (Kulhawy 1475, Lama \& Vutukure 1978). 'The results shown in Fig. 4 are trom a simulation of $5(H)$ ponts in a layer whose original length to thickness ratio is $5(H) 1$, to produce a simulated mean tracture-spacing index of 10 . One hundred flaws were assigned to random sites in this simulation, and their effect on tensile sitength varies randomly from $01 C_{0}$ (0 C_{10}.

The simulated joint spacing in Fig. 4 is similar in general form to the actual spacing of foints in the Monterey Formation (Fig. 4), however it is nol clear whether it is better described as a linear or a log nurmal distrabution The ratio of the standard deviation of normalized foint spacing to mean fornt spacing measured at outcrops is (0.56. In the model simulation of Fig 4 the ratio is 1.34 This similanty between the field data and the results of a simple one dimensional simulation suggests that Hobbs' stress distribution, in the presence

Fig. x (a) The Hobbs' model of form lormalom with Haws randomiy lacaled al $I_{1}, I_{2}, \quad, I_{n}(b)$ Tensile stress vs distance in the ponled layer The amount that a flow reduces the lenssle strengit of the furnted layer is represented by the flaw length, suithe sirength al faw I_{1} is C_{1}, ell Subsequent points Iorm (c) al J_{1} and (d) a a d
ot macroscopic flaws that weaken a jomted layer, may be a plausible model of foint spacing in sedimentary strata

Although Hobbs' model with flaws reasonably de scrabes the lorm of the relationship hetween layer thick ness and foint spacing, the model is not in accord with several important field observations. Two conditions that must be met tormally for Hohbs' stress distribution to apply are, hrsi, that thickness ol the gointed bed is less than or equal to the the thickness of the lower modulus neighboring bed, and second, that no slip occurs at the interlace. It is clear from the field data that the strata we studied violate these assumptions 'The mechanical layer boundanes are very thin relative to jointed layer thick ness, and slip has taken place along these weak layers in some places (this is particularly clear in core ot the Point Arguello oll field).

These assumptions affect the form of the stress distri bution in the fonted layer. The exact form of the stress distnbution is not as important as the general trend predicted by Hobbs; tensile stress is relieved in the region where a new joint forms and tensile stress magni tude increases as a function ol distance frum the font. We tested the Haw modified Hobbs' model with varous

Fig, 4 'Typical foint spacing disiribuition predicted by flaw moditied Hohbs' (14 h'7) model (a) Linear scale and (b) natural logg scale 'The inilial model conlaried $I(K)$ randomly placed haws that weakened the layer l as atitle as 10% ol ils unfraclured tensile strength Other model patamelers $E=n t, 2(0) \mathrm{MPa}, G_{n}=280 \mathrm{MPa}, \mathcal{C}_{1}=50 \mathrm{MPa}$, slarling thackness Io spacinge ratio $=1$. (4)
values ol Young's modulus of the jointed layer and shear modulus ot the neighboring beds. This changes the form of the siress distribution, but the predicled joint spacing distrabution is essentially the same as that of Fig. 4.

Changing the coupling between layers from noslip to, for instance, a tnctionally-coupled intertace will change the stress-distance lunction, but qualitatively the stress tunction will have the same basic character of increasing to its maximum magnitude midway between existing, ponts This is the basis of the qualitative model of point spacing proposed by Price (1966).

A further consideration is the limitation of the model to the one-dımensional computation of joint spacing along a line. A one dimensional model may approximately describe the formation ol the first lormed joint set in a sequence of strata, and so it may be appropriate for comparison with data from the sites in the Monterey Formation we studied, where one jomt set clearly predomınates But subsequent joint sets will be affected by a mechanical interaction with preexisting joint sels as well as by layer boundanes

One parameter that does aflect the form of the joint spacing disiribution is the number of flaws relative to the number of foints that are generated. As the number of avalable flaws approaches and exceeds the final number of joints in these simulated systems, where the ultimate thickness to spacing ratio is unity, the shape of the joint spacing distribution becomes multimodal, as lor example in Fig. 10 'The form of this distribution, simulated by allowing the number of flaws to equal twice the

Joint Spacing / Layer Thickness
Fig, Il Joini spacing, distribuiton predicied by flaw modined Hobbs' model The number ol flaws is relatively large One thousand randomly placed faws weakened the layer to as litile as 10% of ith unfractured tensile sireng,t (Hher model parameters $E=6 \neq 2(X)$ $\mathrm{MPa}, G_{n}=280 \mathrm{MPa}, \mathrm{C}_{11}=511 \mathrm{MPa}$, starling thickness 10 spacing ratac) $=1$ h(k)
ultimate number of joints, is rather symmetrical 'The peaked shape is suggestive ol the idealized Hobbs' model simulations of Fig. 7. Perhaps the eflect of a large number of flaws is to reduce the overall strength of the layer and so to allow foints to develop much as they would il no Haws were present. The simulated disiributions that look most like the observed foint spacing distributions are obtained when the final foint count is about 4-5 immes greater than the number of initial liaws

In summary, we have shown that it is possible to reasonably model the lorm of the observed joint spacing distribution by a simple one dimensional simulation of the effect of macroscopic flaws in the jointed layer. Joints are of course a three dimensional phenomenon, more complex than our simple one-dimensional simu lation, nevertheless we suggest that modest numbers of macroscopic flaws may be the essence of the observed form of the joint spacing statistics.

DISCUSSION

Voight \& Si Pierre (1474), Haxby \& Turcolle (1976), Narr \& Curne (1482) and Engelder (1985) modeled the evolution ot stress in sedimentary sirata during a cycle of burial, diagenesis, lectonism, uplift and erosional unloading, and they concluded that strata are most likely to expenence horizontal extensional strain during uplift, unroofing and cooling of the basinal sequence. Narr (1991) shows that the density of jomis in strata of the Monterey Formation in the deep subsurtace (210)2400 m depth) of the Poinl Arguello oll field varies (Iracture spacing index of (0.08-1.45) with location, but at outcrops the jom density is relatively constant and higher (|racture spacing index of I.3) over a large area The diagenetic grade of the siliciclastic rocks we studied at outcrop indicale they reached a temperature of about $100^{4} \mathrm{C}$, which requires that they were once buried 10 a depth of about $2.5-3.0 \mathrm{~km}$.

We envisage a joint set begmning to form at depth in strata at the Monterey Formation While still buned the joint density is sensitive lo vanations in tectonic strain
between dillerent siructural positions Here the pro cesses of Hobhs＇model operate and the form densily is closely related to extensional stram parallel to hedding Asstrata are uplified and extensional stran continues to increase，a condition is reached where it becomes easier to accomplish this stretching by opening existing，foints logether with sliding along mechanical layer boundanes than by creating new fonts At this stage the strata are saturated with gonts．The strata that we examined in outcrop，which all show about equal Iracture density （Iracture spacing index ： 1.3 ）have perhaps reached this saturation level Alter saluration is reached it is fruitless to compare hacture density among ditlerent locations or rock types because subtle ditterences in Iracture density will disappear as less straned strata continued to form foints while more densely formted rocks stram by open ing of existing foints and sliding on mechanical layer boundanes

CONCLUSIONS

At coastal exposures in central Calıloma relatively hard，cohesive rocks of the Monterey Furmation show a constant ratio of layer thickness to point spacing of about 1．3 This ratio is called the fracture spacing mde＇x．It is approximately the same in outcrop among difterent rock lypes and in different structural locations over a substan tial region（Fig．1），whereas it is much less－ $1.08-1.45-$ in the subsurtace of the Point Arguello oll field where the rocks have not undergone uplift and cooling．The frequency distribution of the joint spacing data is log normal．Relatively solt，nun cohesive mudstones do not have regular jornt sets

Hobhs＇（1967）model ol the controls on foint spacing， which is based on the idea that points contined to a layer release stress in the layer close to the jomt，qualitatively predicts a constant ratio ol layer thickness to joint spacing in an interstratified sequence of rocks with different elastic properties However，a simulation based on this model gives a multimodal spacing fre quency disinbution＇The addition ol macroscopic flaws， which weaken the formed bed at random sites along its length，results in a simulated frequency distribution that is similar in form to the observed log－normal distri bulion

Acknowiledgements－We thank Steve Hook al＇Texacu E \＆P Tech nology Division tor helping inulate this sludy，and for his asmistance with collection of held dald We thank＇Texaco Inc lor lunding the sludy Joumal reviews by Paul Delaney and one anonymous reviewer helped improve the manuscopl This sludy is parl il Narr＇s Phi D） Ihesis reseatich，done al Pancelon Univeraly

REFERENCES

Alkinson，B K 1487 Frucharr Mechantes of Reck Acudemic Piess， London
Bugdonov，A A 1947 ＇The intensity ol cleavage as related to the thickness of heds Sunet Geol 16 （in Russian）
Bramletle，M N 144h The Monlerey Furmaton ol Ciahlamia and the ongin ol its soliceous rocks Frof F＇up US gerol Surv 212

 144－148

 り

Lnbblee，T W I4K2 Repional Geology ol the Transverse Rangen
 the Cuhforma Trunsverser Runge＇s（edited hy File，［）L \＆Minch， J A ）Simill Coast gewl Sirn Gimdebook IO，7－2n
Lounham，J B 1487 Guide lu coastal oulcrops of the Monterey Formalion ol westem Samla Barhara courily，C＇alilomia Field Irip Gude，Fuctit Ser Sin tion Fole＇ont Manter
Engelder， T^{\prime} 148＇）Lading paths 10 ןomi propagation dunng a teclonic cycle anexample trom the Appalathou Plotedau，US A 1 Srut Ged 7．444－4＇7h
Engelder， T I 1087 Jomis and ，hear tractures，in rock In Frar ture Me＇chanics of Rork（edied by Aıkinswin，B K ）Academic Piess， London，27－70
Grithith，A A 1421 The phenomenid ol muplure and fow in solids Trans R Sor Lind 221，Int－148
Gnthit，A A 1424 The theory 14 ruplure In Frot First Int Congr on Apphed Me＇hamis，Delt（ediled hy Biezeno，© E \＆Burgers， J M），4－ヵか
Grivelli，M，O 1482 Abpects al straligraphy，diagenesis，and delor malion in the Monterey Formalion near Santa Mana－Lompoc， C＇alilomia Unpublished M A Ihess，Uloversity il Caliloma， Sania Barbara
Harnis，J F＇，＇Taylor，（i L．\＆Walper，J L 140 ， 4 Relalion of delormation tractures in sedimentary mocks 10 regional and local sruclure Bull Am Ais．Fetrol Geal 44，185々1871
Haxby，W Fi \＆＇Turculle＇，［）L．147h Siressesindured by the addilun or removial ol overhurden and associaled themmal ettects Gerolog＇ 4， $181-184$
Hobbs，［）W 196i7 The lomalion al lensom pomis in sedimentary rocks an explanation Geol Mag 114，Stו－bbh
Huang， 9 \＆Angelier，J 1484 Fracture spacingandity relalion whed thak riess Ge＇ol Mag 126，34－36？
Isadacs，${ }^{-}$M lasla Pornsty reduclion durng diagenests of the Monterey lormalon，Sanla Barbara coastal area，Calitorma In The＇Monterev Formation and Related Silueotes Rocks af Cuhfornia （edited by Garman，R E etal．）Sper Futh eom Foleont Mint＇r Facthe Set Pp 2147－272
Isades，${ }^{\circ} \mathrm{M}$ I48Ih Guide in the Monterey Formation in the C＇alolamia Coustal Area，Ventura lo Sun Lum Ohnspr Partice Sere Am Ass Fetrol Ge＇ol Field Gude＇ 52
Isaacs，$:^{\prime}$ M ，Iusi Compositional vanalion and sequence in the Morcene Monterey Formalion，Santa Barhara coasial atea，Cablor
 （ediled by Larue，［）K \＆Steel，R J）Sipec Fubl Soc econ Faleont Min Facinc Sit ，117－112
Jennings，C－W 1477 Geologe mapol Callorma ealf［in Mines Geol Gipologit Datu Map No？
Jarger，J C \＆Cook，N Gi W 1474 Fundamentals of Reck Mechanics（ Mrdedn）Methuen，Landon
Kulander，B R ，Dean，S L \＆Ward，B J 1441 Fractured core analysis interpretatom，loggenge，and use ol natural and induced hatures incore Am Ass Petrol Leorl Meth Eivplis 8
Kulhawy，F H 147h Sitress delormation properties ol rock and rock disconlinuities Engrg Geoi 9，327－360
Ladera，F L．\＆Pnce，N J 1481 Relationship belween Ifaclare spacing and bed thickness I Strict Gieol 3，174－1K］
Lama，R＇［）\＆Vulukure，N S 1478 Hundhowh on Merhantiul
 ＇Tech，Clausihal
Namman，J \＆Davis，＇T＇lug8 Siruclural iransect of the westem Transverse Ranges，Calilomia，Implicalions lor lathosphenc kine malich and seismic nisk evaluation Geology 16，67）－674，
Nam，W \＆Cume，J B 1482 Onfan ol Iracture porsity－Example form Altamomi held，Uiah Bull Am 4ss Fertol Geal 6b，1211－ 1247
Nam，W［1491 Fracture densily in the deep subsurlace lechniques with appicalion lo Point Arguello wil held Bull Am Ass F＇trol Ge＇ol 75，I 31Nー1323
Piscollor，K A 1481 Diagenetic irends in the sticerous latien ot the Monterey Shale in the Sana Mana regon，Calitoma Sedimento logy 28，447－471
 environments of the Munterey Furmalion, Califomad In The Montere'v Formatoon and Related Silleeomas Roiks of C'uhforma (edited hy Garrison, R E et al) Spet Fiuhl Sion tion Puleont Miner Fucthu Ste , 47-12:
Pollard, [) [) \& Aydin, A laks Progetest in underalanding, ponling, over the pust century Bull geol Sor Am 100, 1181-12104
 britlle Rock Pergamori Press, Oxlord
Pness, S [) Hudson, J A 1476 Disconlinuily spacingsin rock Int J Reck Mech Min Sold Geomech Abs IJ, Ib-lak
Ramberg., H lath Natualand expenmental boudinage J Gerol 6.3, 412-42t
 Cienf. C'use Hist 9, 27-41
 compressed between long rectangular parallel rigid platen A gen logit applacation and a polental viscosimeter in distarled racks (Ahs) Ged Soce Am Arinu Me'ling Abs, 17tr-177
Voight, B \& Sil Plerre, B H P 1474 Sirenshanory and rock slress Proc 3rdComgr Int Soc Ruck Mech 2A, 48it-4 2 ?
Woodnng, W P \& Bramlelle, M N 14 hil Genlogy and paleonlolog, ol the Sunta Mana Distnci Caliloma Prof Pup $1 / S$ geol Surי 222

[^0]: *Present address' Chevron Overseas Petroleum Inc, PO Bax $41 / 46$, San Ramon, CA 4448 31444, U S A

